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Abstract 
Malcode can be easily hidden in document files and go undetected by 

standard technology. We demonstrate this opportunity of stealthy malcode 

insertion in several experiments using a standard COTS Anti-Virus (AV) 

scanner. Furthermore, in the case of zero-day malicious exploit code, 

signature-based AV scanners would fail to detect such malcode even if the 

scanner knew where to look. We propose the use of statistical binary 

content analysis of files in order to detect suspicious anomalous file 

segments that may suggest insertion of malcode. Experiments are 

performed to determine whether the approach of n-gram analysis may 

provide useful evidence of a tainted file that would subsequently be 

subjected to further scrutiny. We further perform tests to determine 

whether known malcode can be easily distinguished from otherwise 

“normal” Windows executables, and whether self-encrypted files may be 

easy to spot. Our goal is to develop an efficient means by static content 

analysis of detecting suspect infected files. This approach may have value 

for scanning a large store of collected information, such as a database of 

shared documents. The preliminary experiments suggest the problem is 

quite hard requiring new research to detect stealthy malcode.  

 

                                                
1 This work was partially supported by a grant from ARDA under a contract with 

Batelle, Pacific Northwest Labs. 



1. Introduction 

Attackers have used a variety of ways of embedding malicious code in 

otherwise normal appearing files to infect systems. Viruses that attach 

themselves to system files, or normal appearing media files, are nothing 

new. State-of-the-art COTS products scan and apply signature analysis to 

detect these known malware. For various performance optimization 

reasons, however, COTS Anti-Virus (AV) scanners may not perform a 

deep scan of all files in order to detect known malcode that may have been 

embedded in an arbitrary file location. Other means of stealth to avoid 

detection are well known. Various self-encryption or code obfuscation 

techniques may be used to avoid detection simply making the content of 

malcode unavailable for inspection by an AV scanner. In the case of new 

zero day malicious exploit code, signature-based AV scanners would fail 

to detect such malcode even if the scanner had access to the content and 

knew where to look.  

In this chapter we explore the use of statistical content analysis of 

files in order to detect anomalous file segments that may suggest infection 

by malcode. Our goal is to develop an efficient means of detecting suspect 

infected files for application to scanning a large store of collected 

information, such as a database of content in a file sharing network. The 

work reported in this chapter is preliminary. Our ongoing studies have 

uncovered a number of other techniques that are under development and 

evaluation. Here we present background summary on our work on 

Fileprints, followed by several experiments applying the method to 

malcode detection.  

The threat model needs to be clarified in this work. We do not 

consider the methods by which stealthy malcode embedded in tainted files 

may be automatically launched and executed. One may posit that detecting 

a tainted file may be easy simply by opening the file and detecting whether 

the application issues a fault. This might be the case if the malcode was 

embedded in such a way as to damage the expected file format causing the 

application to fault. As we show in section 2, one can embed malcode 

without creating such a fault when opening a tainted file. In this work, we 

focus specifically on static analysis techniques to determine whether or not 

we may be able to identify a tainted file. The approach we propose is to 

use generic statistical feature analysis of binary content irrespective of the 

type of file used to transport the malcode into a protected environment. 

Files typically follow naming conventions that use standard 

extensions describing its type or the applications used to open and process 



3 

the file. However, although a file may be named Paper.doc2, it may not be 

a legitimate Word document file unless it is successfully opened and 

displayed by Microsoft Word, or parsed and checked by tools, such as the 

Unix file command, if such tools exist for the file type in question. We 

proposed a method to analyze the contents of exemplar files using 

statistical modeling techniques. In particular, we apply n-gram analysis to 

the binary content of a set of exemplar “training” files and produce 

normalized n-gram distributions representing all files of a specific type. 

Our aim is to determine the validity of files claiming to be of a certain type 

(even though the header may indicate a certain file type, the actual content 

may not be what is claimed) or to determine the type of an unnamed file 

object.  

The conjecture is that we may model different types of files to 

produce a model of what all files of that type should look like. Any 

significant deviation from this model may indicate the file is infected with 

embedded malcode. Suspect files identified using this technique may then 

be more deeply analyzed using a variety of techniques under investigation 

by other researchers (e.g., [9, 16, 18].) 

In our prior work [11, 19, 20], we demonstrated an efficient 

statistical n-gram method to analyze the binary contents of network 

packets and files. This work followed our earlier work on applying 

machine learning techniques applied to binary content to detect malicious 

email attachments [15]. The method trains n-gram models from a 

collection of input data, and uses these models to test whether other data is 

similar to the training data, or sufficiently different to be deemed an 

anomaly. The method allows for each file type to be represented by a 

compact representation of statistical n-gram models. Using this technique, 

we can successfully classify files into different types, or validate the 

declared type of a file, according to their content, instead of using the file 

extension only or searching for embedded “magic numbers” [11] (that may 

be spoofed).   

We do not presume to replace other detection techniques, but 

rather to augment approaches with perhaps new and useful evidence to 

detect suspicious files. Under severe time constraints, such as real-time 

testing of network file shares, or inspection of large amounts of newly 

acquired media, the technique may be useful in prioritizing files that are 

subjected to a deeper analysis for early detection of malcode infection.  

                                                
2 For our purposes here, we refer to .DOC as Microsoft Word documents, although 

other applications use the .DOC extension such as Adobe Framemaker, Interleaf 

Document Format, and Palm Pilot format, to name a few. 



In the next section, we describe some simple experiments of 

inserting malware into normal files and how well a commercial AV 

scanner performed in detecting these infected files. Amazingly, in several 

cases the tainted files were opened without problem by the associated 

application.  Section 3 summarizes our work on fileprints using 1-gram 

distributions for pedagogical reasons. The same principles apply to higher 

order grams. We present several experiments using these techniques to 

detected infected files. Our concluding remarks in section 4 identify 

several areas of new work to extend the preliminary ideas explored in this 

paper.   

2. Deceiving anti-virus software 

Malware may be easily transmitted among machines as (P2P) network 

shares. One possible stealthy way to infect a machine is by embedding the 

malicious payload into files that appear normal and that can be opened 

without incident. A later penetration by an attacker or an embedded Trojan 

may search for these files on disk to extract the embedded payload for 

execution or assembly with other malcode. Or an unsuspecting user may 

be tricked into launching the embedded malcode in some crafty way. In the 

latter case, malcode placed at the head of a PDF file can be directly 

executed to launch the malicious software. Social engineering can be 

employed to do so. One would presume that an AV scanner can check and 

detect such infected file shares if they are infected with known malcode for 

which a signature is available. The question is whether a commercial AV 

scanner can do so. Will the scanning and pattern-matching techniques 

capture such embeddings successfully? An intuitive answer would be 

“yes”. We show that is not so in all cases.  

We conducted the following experiments. First we collected a set 

of malware [22], and each of them was tested to verify they can be 

detected by a COTS anti-virus system3. We concatenate each of them to 

normal PDF files, both at the head and tail of the file. Then we manually 

test whether the COTS AV can still detect each of them, and whether 

Acrobat can open the PDF file without error. These tests were performed 

                                                
3 This work does not intend to evaluate nor denigrate any particular COTS 

product. We chose a widely used AV scanner that was fully updated at the time 

the tests were performed. We prefer not to reveal which particular COTS AV 

scanner was used. It is not germane to the research reported in this paper. 
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on a Windows platform. The results are summarized in table 1. The COTS 

anti-virus system has surprisingly low detection rate on these infected files 

with embedded malware, especially when malware is attached at the tail. 

For those that were undetected, quite a few can still be successfully opened 

by Acrobat appearing exactly as the untouched original file. Thus, the 

malcode can easily reside inside a PDF file without being noticed at all. 

An example of the manipulated PDF file is displayed in figure 1. The 

apparent reason Adobe Acrobat Reader (version 7.0) opens infected files 

with no trouble is that it scans the head of a file looking for the PDF 

“magic numbers” signaling the beginning header meta-data necessary to 

interpret the rest of the binary content. Thus, the portions passed over by 

the reader while searching for its header data provides a convenient place 

to hide malcode.  

Table 1. COTS AV detection rate and Acrobat behavior on embedded malcode. 

Virus at the head of PDF Virus at the tail of PDF 
Total 

virus/worm 
AV can 

detect 

Acrobat can 

open 

AV can 

detect 

Acrobat can 

open 

223 162 (72.6%) 4 /not detected 43 (19.3%) 
17 /not 

detected 

 

 

Fig. 1. Screenshot of original and malware embedded PDF file 



 

We also performed another experiment by inserting the malware 

into some random position in the middle of the PDF file. But since PDF 

has its own encoding and such blind insertion can easily break the 

encoding, generally this is easily noticed by the Acrobat Reader when 

opening the file. This was the case and hence malware simply appended to 

the head/tail is obviously easier without causing any errors by the reader. 

We repeated this experiment on DOC files using some selected malwares, 

and got a similar result. The following table provides the detailed results of 

several malware insertion experiments using well known malware. Only 

CRII can be reliably detected no matter where it is inserted, while 

Slammer and Sasser were missed. 

Table 2. Detailed example of insertion using several well-known malware 

Slammer 

 Virus at head In the middle At tail 

PDF file 
Not detect/open 

fine 

Not detect/open 

error 

Not detect/open 

fine 

DOC file 
Not detect/open 

error 

Not detect/open 

error 

Not detect/open 

fine 

CodeRed II 

Can be detected anywhere 

Sasser 

 Virus at head In the middle At tail 

PDF file Can detect 
Not detect/open 

error 

Not detect/open 

error 

DOC file Can detect 
Not detect/open 

error 

Not detect/open 

fine 

 

Another experiment focused on Windows executables, like 

WINWORD.EXE. After analyzing the byte value distributions of 

executables, we noticed that byte value 0 dominated all others. Application 

executables are stored on disk using a standard block alignment strategy of 

padding of executables (falling at addresses n*4096) for fast disk loading. 

These zero’ed portions of application files provide ample opportunity to 

insert hidden malcode. Instead of concatenating malcode, in this case we 

insert the malcode in a continuous block of 0’s long enough to hold the 
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whole malcode and store the file back on disk. Again, we tested whether a 

COTS AV scanner would detect these poisoned applications. It did not. 

We performed this experiment by replacing the padded segments of 

WINWORD.EXE, from byte positions 2079784 to 2079848. Figure 2 

shows two versions of the application, the normal executable and the other 

infected with malcode, and both were able to open DOC files with no 

trouble. 

 
Fig. 2. Opening of a normal DOC file using the original WINWORD.EXE (left) 

and the infected one WINWORD-Modified.EXE (right). 

  



3. N-gram experiments on files 

Here we introduce the modeling and testing techniques and present the 

results of applying these techniques to detect tainted malware-embedded 

files from normal files of the same type.  

3.1 Fileprints – n-gram distributions of file content 

An n-gram [4] is a subsequence of n consecutive tokens in a stream of 

tokens. N-gram analysis has been applied in many tasks, and is well 

understood and efficient to implement. By converting a string of data to a 

feature vector of n-grams, one can map and embed the data in a vector 

space to efficiently compare two or more streams of data. Alternatively, 

one may compare the distributions of n-grams contained in a set of data to 

determine how consistent some new data may be with the set of data in 

question. In our work to date, we experimented with both 1-gram and 2-

gram analysis of ASCII byte values. The sequence of binary content is 

analyzed, and the frequency and variance of each gram is computed. Thus, 

in the case of 1-grams, two 256-element vectors (histograms) are 

computed. This is a highly compact and efficient representation, but it may 

not have sufficient resolution to represent a class of file types. 

Nevertheless, we test this conjecture by starting with 1-grams. The 

following plot shows that different file types do indeed have significant 

distinct 1-gram patterns. Thus, different file types can be reasonably well 

classified using this technique (see [11]).  

 

 

Fig. 3. 1-gram distribution for different file types. 
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Once a set of models are computed from a set of normal files, a 

test file is measured to determine how closely its content conforms to the 

normal models. This is accomplished by computing the Mahalanobis dis-

tance [20] between the test file in question and the normal (centroid) mod-

els previously computed. The score produced is a distance measure; a dis-

tance threshold is then used to determine whether to declare the file normal 

or not.  

3.2 Truncation and multiple centroids 

Truncation simply means we model only a fixed portion of a file when 

computing a byte distribution. That portion may be a fixed prefix, say the 

first 1000 bytes, or a fixed portion of the tail of a file, as well as perhaps a 

middle portion. This has several advantages. First, for most files, it can be 

assumed that the most relevant part of the file, as far as its particular type 

is concerned, is located early in the file to allow quick loading of meta-

data by the handler program that processes the file type. Second, viruses 

often have their malicious code at the very beginning of a file. Hence, 

viruses may be more readily detected from this portion of the file. 

However, viruses indeed may also be appended to the end of a file, hence 

truncation may also be applied to the tail of a file to determine whether a 

file varies substantially from the expected distribution of that file type. The 

last, truncation dramatically reduces the computing time for model 

building and file testing.  

On the other hand, files with the same extension do not always 

have a distribution similar enough to be represented by a single model. For 

example, EXE files might be totally different when created for different 

purpose, such as system files, games, or media handlers. Thus, an 

alternative strategy for representing files of a particular type is to compute 

“multiple models”. We do this via a clustering strategy. Rather than 

computing a single model MA for files of type A, we compute a set of 

models M
k
A , k>1. The multiple model strategy requires a different test 

methodology, however. During testing, a test file is measured against all 

centroids to determine if it matches at least one of the centroids. The set of 

such centroids is considered a composite fileprint for the entire class. The 

multiple model technique creates more accurate models, and separates 

foreign files from the normal files of a particular type in more precise 

manner. The multiple models are computed by the K-Means algorithm 

under Manhattan Distance as the similarity metric. The result is a set of K 

centroid models,
 

M
k
A which are later used in testing files for various 

purposes. 



3.3 Data sets 

To test the effectiveness of the n-gram analysis on files, we conducted 

several experiments to determine whether it can correctly classify files and 

whether it can detect malcode.  

The test files used in the experiments include 140 PDF files. The 

malicious files used for embedding were collected from emails, internet 

sources [22] and some target honeypot machines setup for this purpose in 

our lab. The PDF files were collected from the internet using a general 

search on Google. In this way, they can be considered randomly chosen as 

an unbiased sample. These tests are preliminary; considerable more effort 

is needed to compose a proper set of training and test data to ensure the 

files in question represent a true sample of interest. Here we collected 

documents from an open source and have no means to accurately 

characterize whether this sample is truly representative of a collection of 

interest. Nevertheless, this experiment provides some evidence of whether 

the proposed techniques show promise or not.  

3.4 Detecting malware embedded files 

First we revisit our malcode embedding experiment. We’ve seen that the 

COTS AV system we used can easily miss the malcode hidden inside 

normal appearing files. Here we apply the 1-gram analysis and see how 

well it may be able to detect the malicious code sequences. 100 of the 140 

PDF files were used to build head and tail 1-gram models. Then we tested 

the remaining 40 normal PDF files and hundreds of malware-embedded 

files against the model. Since we know ground truth, we measure the 

detection rate exactly when the false positive rate is zero, i.e., no normal 

PDF files been misclassified as malware-infected. The result is displayed 

in table 3, which is much higher than the COTS anti-virus software 

detection rate, which for these files is effectively zero. Notice that the total 

number of malware-embedded files is different for different truncation 

sizes. That is because the malware used in this study differ in size and we 

only consider the problem of classifying a pure malcode block fully 

embedded in a portion of the PDF file. We consider a concatenated PDF 

file as a test candidate only if the malcode size is equal to or greater than 

the truncation size used for modeling. 
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Table 3. Detection rate using truncated head and tail modeling 

Models head N bytes 

1000 bytes 500 bytes 200 bytes 
Detect 

49/56(87.5%) 314/347(90.5%) 477/505(94.5%) 

Models tail N bytes 

1000 bytes 500 bytes 200 bytes 
Detect 

42/56(75%) 278/347(80.1%) 364/505(72.1%) 

 

It may be the case that it is easier to detect the malcode if it is 

concatenated at the head or tail of a file, since different file types usually 

have their own standard header information and ending encoding. Malcode 

may be significantly different from these standardized encodings. 

However, we test whether malware can effectively be hidden in some 

middle portion of a file (presuming that the file would still possibly be 

opened correctly). A reasonable assumption about such insertion is that the 

malware is inserted as a continuous whole block. So we apply the n-gram 

detection method to each block of a file’s binary content and test whether 

the model can distinguish PDF blocks from malware blocks. If so, then we 

can detect the malcode hidden inside PDF files.  

We compute byte distribution models using N consecutive byte 

blocks from 100 PDF files, then test the blocks of the malware and another 

40 PDF files against the model, using Mahalanobis distance. Figure 3 

shows the distance of the malware blocks and PDF blocks to the normal 

model, using N=500 byte blocks and N=1000 byte blocks, respectively. In 

the plot we display the distance of the malcode blocks on the left side of 

the separating line and the normal PDF on the right. As the plots show, 

there is a large overlap between malcode and PDF blocks. The poor results 

indicate that malware blocks cannot be easily distinguished from normal 

PDF file blocks using 1-gram distributions.   



 

Fig. 4. The Mahalanobis distance of the normal PDF and malware blocks to the 

trained PDF block model. The left is 500-byte block and the right plot is 1000-

byte block. 

In order to understand why the block-based detection using 1-

grams does not work well, we plot the byte distribution of each block of a 

normal PDF file and the Sasser worm code. The first 9 blocks of the PDF 

file and the first 6 blocks of Sasser are displayed in the following plots. 

These plots clearly show that different blocks inside a PDF file differ 

much in their byte distribution, and we cannot determine an absolute 

difference of the malcode blocks from PDF blocks. Therefore, it appears 

that a 1-gram statistical content analysis might not have sufficient 

resolution for malware block detection. Either higher order grams (perhaps 

2-grams or 3-grams) may suffice, or we may need more syntactic 

information about the file formats to adequately distinguish malcode 

embedded in PDF files. A search for better statistical features is part of our 

ongoing research.  
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(a) PDF file 

 
(b) Slammer worm 

Fig. 5. Byte value distributions of blocks of the PDF file and Sasser worm. 

3.5 Classifying normal executables and viruses 

In this experiment, we use a collection of malcode executables gathered 

from other external sources, and compare the 1-gram and 2-gram 

distributions of these to the corresponding distributions of “normal” 

Windows executables to determine whether viruses exhibit any clear 

separating characteristics. We conjecture that the Windows executables are 



generated by programming environments and compilers that may create 

standard “headers” different from those used by virus writers who deliver 

their viruses via email or file shares.  

We apply three modeling methods to these experiments, which are 

one-centroid, multi-centroids and exemplar files as centroids. The one 

centroid method trains one single model for each class (or type) of file. We 

build n models M1, M2, …, Mn, from n different file types. Then, we 

compute the distance of the test file F to each model, and F is classified to 

the model with the closest distance.  

Alternatively, the multi-centroids method, we build k models Mt
1, 

M
t
2, …, M

t
k using k-means algorithm for each file type t as described in 

section 3.2. There are k*T models in total, where T is the number of file 

types. k is set to 10 in this test. The test strategy is the same as in the case 

of one centroid. The test file F is classified to the model with the closest 

distance.  

A third method is also tested. Here we use a set of exemplar files 

of each type as centroids. Thus, a set of randomly chosen normal files for 

each file type are used as centroids. There are N models if there are N 

chosen exemplar files. We also analyze the accuracy of the method using 

different truncations – first 10, 50, 100, 200, 400, 600, 1000, 2000, 4000, 

6000, and 8000 bytes, and the entire file. In this experiment, we evaluate 

both 1-gram and 2-gram analysis. 

We trained models on 80% of the randomly selected files of each 

group (normal and malicious) to build a set of models for each class. The 

remaining 20% of the files are used as test files. Again, we know ground 

truth and hence can accurately evaluate performance. Note that all of the 

malicious files extensions are EXE. For each of the test files, we evaluate 

their distance from both the “normal model” and the “malicious model”. 

31 normal application executable files, 45 spyware, 331 normal executable 

under folder System32 and 571 viruses were tested. Three “pairs” of 

groups of files are tested – Normal executable vs. spyware, normal 

application vs. spyware and normal executable vs. viruses. We report the 

average accuracy over 100 trials using cross validation for each of the 

modeling techniques. 

The results are shown in figure 6. Each column represents each 

modeling method: one-centroid, muli-centroids and exemplar file 

centroids. The rows indicate the testing “pairs”. In each plot, the X and Y-

axis are the false positive rate and detection rate, respectively. The asterisk 

marks are 1-gram tests using different truncation sizess, and the circle 

marks represent the results of 2-gram centoids. In these plots, the 

truncation sizes are not arranged in order. In these two dimensional plots, 

the optimum performance appears closest to the upper left corner of each 
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plot. That is to say, a false positive rate of 0 and a detection rate of 1 is 

perfect performance.  

The results show relatively good performance in some case of 

normal executable vs. spyware and normal executable vs. virus. Because 

viruses and worms usually target the System32 folder, we can reasonable 

well detect non-standard malicious files in that folder. Moreover, the 

performance results varied under different truncation sizes. Thus, we have 

considerable additional analysis to perform in our future work to identify 

appropriate file sizes (and normalization strategies) to improve detection 

performance. However, the plots clearly indicate that performance varies 

widely, which suggests the comparison method is too weak to reliably 

detect malicious code.  

 
Fig. 6. 2-class classification of malware and normal EXE files. X-Axis: false 

positive, Y-Axis: detection rate. Asterisk marks: 1-gram test, Circle marks: 2-

gram test. 

Notice that there is a high false positive rate in the case of testing 

normal applications to the Spyware samples. This is due to two reasons. 

First, the range of the normal application file size is too large, ranging 

from 10KB to 10MB. It is hard to normalize the models when the data 

ranges so widely. Second, the spyware files are somewhat similar to 



normal application files. They are both MS Windows applications, and 

they may be used for similar purposes. Hence, other features may be 

necessary to explore ways of better distinguishing this class of files. 

In the experiments performed to date, there is no strong evidence 

to indicate that 2-gram analysis is better than 1-gram analysis. Even 

though the 1-gram memory usage is much smaller and the computation 

speed is much faster, we may need to analyze far more many files to 

determine whether the heavy price paid in performing 2-gram analysis will 

perform better ultimately.  

3.6 Uniform Distributions of 1-gram analysis: encrypted 
files and spyware 

In this experiment we scan Windows files to determine whether any are 

close to a uniform 1-gram distribution. We thus test whether spyware that 

is obfuscated by self-encryption technology may be revealed as 

substantially different from other executable files on a Windows host 

platform. We conjecture that self-encrypted files, such as stealthy Trojans 

and spyware, may be detectable easily via 1-gram analysis. 

The normal EXE from System32, spyware and virus files used in 

the experiments reported in the previous section are used here again. 

Moreover, we randomly select 600 files (DOC, PPT, GIF, JPG, PDF, 

DLL) from Google, 100 for each type. Since the models are normalized, 

the uniform distribution is an array with uniform value 1/n, where n is the 

length of the array and n is 256 in the 1-gram test. For each of the test files, 

we compute the Manhattan distance against the uniform model and plot the 

distance in figure 7. The files that are closest to uniform distribution are 

listed in table 7.  

As the plot shows, JPG, GIF and PDF files are self-encoded, so 

they are more similar to the uniform distribution. System32 files and DLL 

files are not self-encrypted, and most of the virus and spyware tested are 

also not self-encrypted. However, some of the normal files are self-

encrypted and quite similar to the random distribution. An interesting 

example is the application ad-aware.exe, which is a COTS adware 

detection application that apparently uses self-encryption, perhaps to 

attempt to protect its intellectual property. 
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Fig. 7. The distance of testing files against the uniform distribution. X-Axis: the 

test files, Y-Axis: the distance. 

 

Table 7. Files whose content is deemed close to a uniform 1-gram distribution 

(hence likely encrypted).  

File name Description 

Ieee-submission-

instruct.doc 

An ieee submission format instruction Word file. It is 

unclear why this file follows a normal distribution.  

Ad-Aware.exe Ad-Aware.exe: ad-aware from lavasoft, searches and 

removes spyware and/or adware programs from your 

computer. 

msgfix.exe msgfix.exe is the W32.Gaobot.SN Trojan. This Trojan 

allows attackers to access your computer, stealing 

passwords and personal data. 

Qazxswcc.exe qazxswcc.exe is as a backdoor Trojan. 

Asm.exe asm.exe is a commercial spyware program by Gator. This 

program monitors browsing habits and distributes the 

data back to a Gator server for analysis. This also 

prompts advertising pop-ups. 

wast2.exe wast2.exe is an adware based Internet Explorer browser 

helper object that delivers targeted ads based on a user’s 

browsing patterns.  

 



4. Concluding Remarks 

In this paper, we demonstrate that simple techniques to embed known 

malcode in normal files can easily bypass signature-based detection. We 

successfully inserted known malcode in non-executable (PDF and DOC) 

files without being detected by AV scanners, and several were normally 

opened and executed. Various code obfuscation techniques can also be 

used by crafty attackers to avoid inspection by signature-based methods. 

We propose an alternative approach to augment existing signature-based 

protection mechanisms with statistical content analysis techniques. Rather 

than only scanning for signatures, we compute the statistical binary content 

of files in order to detect anomalous files or portions of files which may 

indicate a malcode embedding. Although it may be relatively easy to 

detect tainted files where malcode is embedded in the head (where normal 

meta-data is expected) or at the tail of a file, detecting embeddings within 

the interior portion of a file poses a significant challenge. The results show 

that far more work is needed to identify files tainted by stealthy malcode 

embeddings. On the positive side, self-encrypted files are relatively easy to 

spot.  

The results reported here are preliminary, and have opened up 

other avenues of future work. For example, adherence to a 1-gram model 

may not be the right strategy. Higher order grams may reveal more 

structure in files, and help identify unusual segments worthy of deeper 

analysis. Furthermore, file formats are defined by, typically, proprietary 

and unpublished syntactic conventions providing markers delimiting 

regions of files handled different (eg., embedded objects with specialized 

methods for their processing) that may be analyzed by alternative methods. 

Utilizing this information may provide a finer granularity of modeling 

normal file formats and perhaps produce improved performance.  

Finally, we believe another path may be useful, profiling applica-

tion execution when opening typical/normal files. It may be possible to 

identify portions of files that harbor malcode by finding possible devia-

tions from normal application behavior. Combining static analysis with 

dynamic program behavior analysis may be the best option for detecting 

tainted files with embedded stealthy malcode.  
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